

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 2990-2993

Solvent-free one-pot synthesis of thallium complexes of Tp $[BH(Pz)_3]^-$ (Pz = pyrazolate) and its derivatives

Kazuomi Tsuda, Kengo Miyata, Tomoko Okuno, Masahiro Yoshimura, Shinji Tanaka, Masato Kitamura*

Research Center for Materials Science and Department of Chemistry, Nagoya University, Chikusa, Nagoya 464-8602, Japan

Received 28 January 2008; revised 24 February 2008; accepted 28 February 2008 Available online 2 March 2008

Abstract

Heating a 0.5:1:3 mixture of Tl₂SO₄, KBH₄, and HPz or 3-, 4-, and/or 5-substituted derivatives without the use of any solvent afforded the corresponding thallium complexes of hydrotris(1-pyrazolyl)borate (Tp), and its various substituted forms in high yields. This simple and efficient method should enhance the utility of TITp-related complexes, which are widely used as mild Tp ligand transfer reagents in the preparation of a variety of transition metal Tp complexes. © 2008 Elsevier Ltd. All rights reserved.

Trofimenko's C_{3v} fac-type ligands, hydrotris(1-pyrazolyl)borate (Tp) and its various substituted forms are widely known as scorpionates.^{1,2} Their metal complexes attract much attention in numerous different fields such as catalytic reactions,³ metalloenzyme modelling,⁴ and technomimetic molecules.⁵ Thallium(I) complexes of scorpionates are frequently used as mild and efficient reagents for the transfer of ligands to a variety of transition metals.⁶ This is because of their many advantages such as being less reducing than the corresponding alkali metal salts, their high stability, and the ease of isolation and structural characterization of new Tp^{R^1,R^2,R^3} ligands due to their high crystallinity. The thallium complexes are generally prepared in two steps: First, KTp^{R^1,R^2,R^3} is synthesized from KBH₄ and the corresponding pyrazole derivatives (HPz^{R^1,R^2,R^3}) , and then the potassium salt is reacted with TlNO₃.⁷ While the process is simple, the requirement to use an excess of HPz^{R^1,R^2,R^3} sometimes causes a problem in the isolation of the KTp^{R^1,R^2,R^3} . Furthermore, the removal of the byproduct, KNO₃, in the second step decreases the efficiency of the process. The use of explosive metal nitrate under reductive conditions is also undesirable. Due to the high utilization of $TITp^{R^1,R^2,R^3}$, a more efficient and direct method of synthesis is desirable. This Letter describes a one-pot synthesis of TITp-related compounds just by mixing Tl_2SO_4 , KBH₄, and pyrazole derivatives in a 0.5:1:3 mol ratio without the use of any solvent.

Initially, the optimum choice of TIX^8 and MBH_4 was investigated on a 0.5 mmol scale by fixing 1 to HPz, 1a only. A 1:1:3 mixture of TIX, MBH₄, and 1a was mixed

^{*} Corresponding author. Tel.: +81 52 789 2957; fax: +81 52 789 2261. *E-mail address:* kitamura@os.rcms.nagoya-u.ac.jp (M. Kitamura).

^{0040-4039/\$ -} see front matter \circledast 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.02.150

Fig. 1. Effect of varying TIX and MBH₄ in one-pot synthesis of TITp under standard condition (0.5 mmol scale, TI:M:HPz = 1:1:3, 140 °C 1 h then 180 °C 5 h). Others are mainly TIBH₂(Pz)₂ and TIB(Pz)₄. ^a Undetermined compounds with <10% intensity of TITp ¹¹B signal were contained.

in a mortar and heated at 140 °C for 1 h followed by 180 °C for 5 h. Partition of the mixture between CHCl₃ and water followed by concentration of the CHCl₃ extract afforded a solid. The yield and purity were assessed by ¹H and ¹¹B NMR spectroscopy. The results are shown in Figure 1. Blue and red bars correspond to the yield of TITp obtained with KBH₄ and NaBH₄, respectively. Pale colors indicate the formation of subproducts, mainly $TlBH_2(Pz)_2$ 3 and $TlB(Pz)_4$ 4. The combination of Tl_2SO_4 and KBH_4 afforded, after 96% conversion of HPz, a 99:1:0 mixture of TlTp, TlBH₂(Pz)₂, and TlB(Pz)₄. KBH₄ is more efficient than NaBH₄ with TlX (X = $1/2(SO_4)$, OAc, Cl, I), while the opposite effect is observed with Tl₂CO₃, TlF, and TlBr. The combinations TlF/NaBH₄ and TlBr/NaBH₄ are also effective, but do not match the yield of TITp with the Tl_2SO_4/KBH_4 system. The $Tl_2SO_4/KBH_4/HPz$ method obtained by the preliminary screening was successfully confirmed by a 10 g-scale synthesis of TITp.⁹ The ¹H, ¹³C, and ¹¹B NMR spectra after a single precipitation (86% isolated yield) are shown in Figure 2. The NH signal of HPz at δ 11 completely disappeared and the three unsymmetrical protons and carbons at C(3), C(4), and C(5) resonate at δ 7.6, 6.2, and 7.7 and at δ 139, 104, and 136, respectively. The BH signal coupled with the ¹¹B nucleus appears as a quartet with $J_{\rm BH} = 111$ Hz, while the ¹¹B resonates at δ -2.7 as a doublet. The ICP analysis of the sample showed TI:B:K = 1:1.00: < 0.01. All of the above data clearly indicate the formation of TITp of high purity.

The Tl₂SO₄/KBH₄ method is applicable to a variety of pyrazoles (1) as shown in Table 1. Symmetrical pyrazoles **1a**, **1d**, **1e**, and **1h** (entries 1, 4, 5, and 8) and unsymmetrical pyrazoles **1b**, **1c**, and **1f** (entries 2, 3, and 6) gave the corresponding **2**,¹⁰ TlTp, TlTp^{4Me}, TlTp^{Me2}, TlTp^{Me2,Br}, TlTp^{Me}, TlTp^{Ph}, and TlTp^{4Bo,2} respectively, with high purities. Use of tetrahydroindazole **1g** led to a 29:42:24:4 mixture of four regioisomers (entry 7).¹¹

In the present solvent-free one-pot preparation of TITp and related compounds, there are two possible reaction pathways. One is via TIBH₄,¹² which would be produced

Fig. 2. ¹H (a), ¹³C{¹H} (b), and ¹¹B NMR (c) spectra of TlTp (CDCl₃ 23 °C, 50 mM). Green-filled signal is assignable to TlB(Pz)₄.

by KBH₄ reacting with 0.5 equiv of Tl₂SO₄. Reaction of TlBH₄ with 3 equiv of HPz would give TlTp with the liberation of H₂ gas. The other pathway is via KTp generated by the reaction of KBH₄ and 3 equiv of HPz followed by the reaction with 0.5 equiv of Tl_2SO_4 . To examine these reaction pathways the following two component mixtures, KBH₄/Tl₂SO₄, TlBH₄/HPz, KBH₄/HPz, and KTp/Tl₂SO₄, were independently mixed at 180 °C for 5 h and then analyzed by solid-state ¹¹B NMR or IR using Nujol.¹³ TIBH₄¹² and KTp¹⁴ were synthesized according to literature methods. The KBH₄/Tl₂SO₄ system resulted in no reaction (solid-state ¹¹B NMR: δ -60 for KBH₄, δ -50 for TlBH₄¹²). Although the direct preparation of TlTp from TlBH₄ and HPz is possible, the lack of reaction for KBH_4/Tl_2SO_4 suggests that the TlBH₄ pathway is unlikely. On the other hand, the KBH₄/HPz system afforded a 9:1 mixture of KTp and KBH₂(Pz)₂, and KTp/Tl₂SO₄ gave a significant amount of TITp (IR analysis: 2388 cm⁻¹ for KTp^{14} and 2443 cm⁻¹ for $TITp^{15}$) in the reaction system. Although the formation of TITp, via a small amount of TlBH₄ generated, cannot be completely ruled out, the most plausible route is by the way of KTp.

In summary, we have established a simple and efficient process for the synthesis of $TITp^{R^1,R^2,R^3}$ complexes just by mixing three components, Tl_2SO_4 , KBH₄, and pyrazoles. While the yields and purities are not perfect, the method is superior to the conventional routes from many view-points including chemical yields, operability, and applicability. The present method should satisfy the conditions required for the preparation of the $TITp^{R^1,R^2,R^3}$ complexes from difficult-to-obtain HPz^{R^1,R^2,R^3} compounds. In view of the importance of the scorpionates, the new method should attract much attention in a wide range of scientific and technological fields.

Table 1 Preparation of TITp and related complexes^a

Entry	Н	Pz^{R^1,R^2,R^3} (1)	% Convn ^b	Product ^c	
				2:3 ^d :4 ^d	% Yield of 2 ^e
1	a	HN N	96	99:1:0 ^f	96 (87)
2	b	HN N	100	100:0:0 ^f	100 (74) ^{g,h}
3	c		97	98:1:1	95 (77) ^g
4	d		97	99:0:1	96 (65)
5	e		98	93:7:0	92 (75)
6	f	HN N	99	99:0 ^f :0 ^f	98 (78) ^g
7	g		61	99:0 ^f :1	60 (51) ^{g,i}
8	h	HN N N Br	98	100:0:0	98 (82)

^a Reactions were carried out by mixing Tl_2SO_4 (0.25 mmol), KBH₄ (0.5 mmol), and HPz^{R¹,R²,R³} (1.5 mmol) at 120–160 °C for 1 h under an Ar stream then 180 °C for 4–7 h in a sealed system unless otherwise specified. The values of % convn, % yield, and the product ratio were rounded in the first decimal place.

^b Consumption of 1.

^c Determined by ¹H and ¹¹B NMR analyses of the products obtained after CHCl₃ extraction followed by evaporation. The chemical shifts of TITp, TIBH₂(Pz)₂, and TIB(Pz)₄ are δ -2.68 (d, $J_{BH} = 111$ Hz, *B*H), δ -9.30 (t, $J_{BH} = 100$ Hz, *B*H₂), and δ 0.13 (s, *B*), respectively. According to the order of the chemical shifts and the coupling patterns, other thallium borates were tentatively assigned.

^d 3: $TlBH_2(Pz^{R^1,R^2,R^3})_2$. 4: $TlB(Pz^{R^1,R^2,R^3})_4$.

^e Values in parentheses are based on the calculated mass of **2** in the crude products obtained after workup. For the detailed workup, see Ref. 9.

^f Contains less than 0.4% of **3** or **4**.

 g Formation of $TlTp^{R^1,R^2,R^3}$ and its regioisomers $TlTp^{R^1,R^2,R^{3\ast}}$ is possible.

^h The regioisomer ratio was 90:9:1:0.

ⁱ The regioisomer ratio was 29:42:24:4.

Acknowledgments

This work was aided by the Grant-in-Aid for Scientific Research (No. 14078121) from the Ministry of Education, Science, Sports and Culture, Japan. We are grateful to Mrs. T. Noda, K. Oyama, and Y. Maeda for their technical support in reaction vessel production, NMR measurements, and ICP analyses.

References and notes

- (a) Trofimenko, S. *Chem. Rev.* 1993, 93, 943–980; (b) Kitajima, N.; Tolman, W. B. *Prog. Inorg. Chem.* 1995, 43, 419–531; (c) Parkin, G. *Adv. Inorg. Chem.* 1995, 42, 291–393; (d) Trofimenko, S. *Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands*; Imperial College Press: London, 1999; (e) Slugovc, C.; Schmid, R.; Kirchner, K. *Coord. Chem. Rev.* 1999, 185–186, 109–126; (f) Slugovc, C.; Padilla-Martínez, I.; Sirol, S.; Carmona, E. *Coord. Chem. Rev.* 2001, 213, 129– 157; (g) Marques, N.; Sella, A.; Takats, J. *Chem. Rev.* 2002, 102, 2137– 2160; (h) Trofimenko, S. *J. Chem. Educ.* 2005, 82, 1715–1720.
 The abbreviation rule for Tp^{R¹,R²,R³} ([BH(Pz^{R¹,R²,R³})₃]⁻) basically
- 2. The abbreviation rule for $Tp^{R^1,R^2,R^3}([BH(Pz^{R^1,R^2,R^3})_3]^-)$ basically followed that defined by Trofimenko. The superscripted R^1 , R^2 , and R^3 correspond to the substituents at C(3), C(5), and C(4) on the pyrazolyl ring, respectively. The priority of C(3) is the highest, followed by C(5) and then C(4). When the structure cannot be defined uniquely, the carbon number is attached before the substituent: $R^1 = R^2 = R^3 = H$: $Tp, R^1 = CH_3$; $R^2 = R^3 = H$: Tp^{Me} , $R^1 = R^2 = R^3 = H$: Tp^{Ph} , $R^1 = R^2 = H$; $R^3 = CH_3$: Tp^{4Me} , $R^1 = R^2 = CH_3$; $R^3 = H$: Tp^{Me2} (Tp^*), $R^1 = H$; $R^2 R^3 = (CH)_4$: Tp^{4Bo} , $R^1 R^3 = (CH)_4$; $R^2 = H$: Tp^{3Bo} , $R^1 = H$; $R^2 R^3 = (CH)_2$; Tp^{4mt4} , $R^1 R^3 = (CH)_4$; $R^2 = H$: Tp^{3mt4} , $R^1 = R^2 = CH_3$; $R^3 = Br$: $Tp^{Me2,Br}$ (Tp^{*Br}). The regioisomers were described by the addition of '*' at the end of the superscripts (e.g., Tp^{R^1,R^2,R^3} vs Tp^{R^1,R^2,R^3}) $_2(Pz^{R^2,R^1,R^3})]^-$, $[BH(Pz^{R^1,R^2,R^3})(Pz^{R^2,R^1,R^3})_2]^-$, and $[BH(Pz^{R^1,R^2,R^3})_2(Pz^{R^2,R^1,R^3})]^-$ are not referred.
- 3. The catalytic reactions reported before 1999 are reviewed in Ref. 1d. The recent reports and the ones not listed in Ref. 1d, are as follows. C-C bond formation: (a) Domhöver, B.; Kläui, W.; Kremer-Aach, A.; Bell, R.; Mootz, D. Angew. Chem., Int. Ed. 1998, 37, 3050-3052; Oxidation: (b) Santos, A. M.; Kühn, F. E.; Bruus-Jensen, K.; Lucas, I.; Romão, C. C.; Herdtweck, E. J. Chem. Soc., Dalton Trans. 2001, 1332-1337; Reduction: (c) Chan, W.-C.; Lau, C.-P.; Chen, Y.-Z.; Fang, Y.-Q.; Ng, S.-M.; Jia, G. Organometallics 1997, 16, 34-44; (d) Yin, C.; Xu, Z.; Yang, S.-Y.; Ng, S. M.; Wong, K. Y.; Lin, Z.; Lau, C. P. Organometallics 2001, 20, 1216-1222; (e) Alvarado, Y.; Busolo, M.; López-Linares, F. J. Mol. Catal. A: Chem. 1999, 142, 163-167. For the chiral Tp ligands, see: (f) LeCloux, D. D.; Tolman, W. B. J. Am. Chem. Soc. 1993, 115, 1153-1154; (g) Keyes, M. C.; Chamberlain, B. M.; Caltagirone, S. A.; Halfen, J. A.; Tolman, W. B. Organometallics 1998, 17, 1984-1992; (h) Motson, G. R.; Mamula, O.; Jeffery, J. C.; McCleverty, J. A.; Ward, M. D.; von Zelewsky, A. J. Chem. Soc., Dalton Trans. 2001, 1389-1391; (i) Babbar, P.; Brunner, H.; Singh, U. P. Indian J. Chem., Sect. A 2001, 40, 225-227; (j) Singh, U. P.; Babbar, P.; Hassler, B.; Nishiyama, H.; Brunner, H. J. Mol. Catal. A: Chem. 2002, 185, 33-39.
- Kitajima, N.; Fujisawa, K.; Moro-oka, Y.; Toriumi, K. J. Am. Chem. Soc. 1989, 111, 8975–8976.
- Carella, A.; Jaud, J.; Rapenne, G.; Launay, J.-P. Chem. Commun. 2003, 2434–2435.
- 6. Janiak, C. Main Group Met. Chem. 1998, 21, 33-49.
- The original report on TITp synthesis, see: (a) Bruno, G.; Ciliberto, E.; Fragalá, I.; Granozzi, G. *Inorg. Chim. Acta* **1981**, *48*, 61–64; See also: (b) Trofimenko, S.; Calabrese, J. C.; Thompson, J. S. *Inorg. Chem.* **1987**, *26*, 1507–1514; (c) Herdtweck, E.; Peters, F.; Scherer, W.; Wagner, M. *Polyhedron* **1998**, *17*, 1149–1157.
- TINO₃ must not be used. Mixing TINO₃ with KBH₄ in a solid state sometimes causes an explosion.
- Procedure: Because of the toxicity of thallium compounds, all of the processes should be done in a well-benched fumed hood. 1H-Pyrazole (5.11 g, 75.1 mmol), Tl₂SO₄ (6.31 g, 12.5 mmol), and KBH₄ (1.35 g, 25.0 mmol) were placed in a 80-mL Young-type Schlenk tube (wall thickness: 5 mm. The pressure is released through Teflon valve at ca.

3 atm. The use of pressure-tight glass is recommended) containing a magnetic stirring bar. The whole system was evacuated and filled with argon. The tube was immersed in an oil bath so that the level of the solids in the tube was slightly below the surface of the oil. The mixture was stirred at 140 °C for 1 h under an argon stream in an open system, and then the Schlenk tube was sealed by closing the Teflon Young's tap. At this stage, ca. 65:35 TITp and TIBH₂(Pz)₂ mixture is formed. After 2-h heating at 180 °C, the mixture was allowed to cool to room temperature. The Schlenk tube was connected to an argon line, and then the internal pressure, which had been raised by the evolution of hydrogen gas, was carefully released. Subsequent 3-h heating at 180 °C in the closed system followed by cooling to room temperature afforded a white solid. Chloroform (300 mL) was added, and the resulting suspension was washed three times with water (300 mL). Drying of the organic layer over Na₂SO₄ (100 g), followed by filtration and evaporation in vacuo gave as a white solid (9.65 g) in 99% conversion of 1H-pyrazole. The crude products were determined by ¹H and ¹¹B NMR analyses to consist of TITp, TIBH₂(Pz)₂, and TlB(Pz)₄ in a 98:1:1 ratio, indicating that TlTp forms in 97% vield. The mass of TITp is calculated to be 9.35 g, which corresponds to 90% yield. Single precipitation from CH2Cl2 (10 mL) and CH3OH $(20\mbox{ mL})$ afforded TITp with high purity in 86% isolated yield (see Fig. 2 for NMR spectra).

- 10. Abbreviation '-N-N-' in compound 2 structure is a pyrazolyl group matching the one at the right or left pyrazole structure of 2.
- Claramunt, R. M.; María, M. D. S.; Elguero, J.; Trofimenko, S. Polyhedron 2004, 23, 2985–2991.
- 12. For the first potential synthesis of TlBH₄ from TlNO₃ and KBH₄, see: Waddington, T. C. *J. Chem. Soc.* **1958**, 4783–4784. A reliable and safe procedure together with spectroscopic data of TlBH₄: Kitamura, M.; Takenaka, Y.; Okuno, T.; Holl, R.; Wünsch, B. *Eur. J. Inorg. Chem.* **2008**, 1188–1192. TlBH₄: ¹H NMR (600 MHz, DMF- d_7) δ 2.51 (q, ¹*J*_{11BH} = 81.9 Hz, ¹¹BH₄), 2.51 (septet, ¹*J*_{10BH} = 27.5 Hz, ¹⁰BH₄). ¹¹B NMR (193 MHz, DMF- d_7) δ -31.7 (quint, ¹*J*_{11BH} = 81.5 Hz, BH₄). Solid-state ¹¹B NMR (700 MHz) δ -50.2 (s, ¹¹BH).
- 13. The use of KBr method causes K/Tl exchange. The ¹¹B signals of KTp and TlTp could not be discriminated either in the solid-state NMR (δ -24) or in the solution-state NMR (δ -2.4 in DMF- d_7).
- 14. Trofimenko, S. J. Am. Chem. Soc. 1967, 89, 3170-3177.
- Craven, E.; Mutlu, E.; Lundberg, D.; Temizdemir, S.; Dechert, S.; Brombacher, H.; Janiak, C. *Polyhedron* 2002, 21, 553–562.